Engaging All Faculty in Direct Assessment of Coursework

Darryl P. Butt
College of Mines and Earth Sciences
University of Utah, Salt Lake City, UT 84102
darryl.butt@utah.edu

York R. Smith
College of Mines and Earth Sciences
University of Utah, Salt Lake City, UT 84102
york.smith@utah.edu
Direct-Assessment Outcomes Matrix

<table>
<thead>
<tr>
<th>ABET Outcomes</th>
<th>1</th>
<th>2</th>
<th>3*</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET E 1630 Introduction to Metallurgical Engineering I</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 1</td>
</tr>
<tr>
<td>MET E 1640 Introduction to Metallurgical Engineering II</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 2</td>
</tr>
<tr>
<td>MET E 2300 Strengths of Materials</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 3</td>
</tr>
<tr>
<td>MET E 3070 Statistical Methods in Earth Sci & Eng</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 4</td>
</tr>
<tr>
<td>MET E 3200 Computational Methods</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 5</td>
</tr>
<tr>
<td>MET E 3610 Metallurgical Engineering Thermo I</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 6</td>
</tr>
<tr>
<td>MET E 3630 Metallurgical Engineering Thermo II</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 7</td>
</tr>
<tr>
<td>MET E 4990 Undergraduate Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTCOME 8</td>
</tr>
<tr>
<td>MET E 5260 Physical Metallurgy I</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>MET E 5450 Mechanical Behavior of Metals</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>MET E 5670 Mineral Processing I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET E 5700 Low Temperature Chemical Processing</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET E 5710 High Temperature Chemical Processing</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET E 5750 Transport and Rate Phenom</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET E 5760 Process Synthesis, Design & Econ I</td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET E 5780 Metals Manufacturing Processes</td>
<td></td>
<td>P</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

*Also use WRTG 3015

- Each outcome is assessed with at least two classes
- Secondary outcomes used if primary outcomes are not met
Faculty Self Assessment - Reflective Memo

Instructor Name:
Semester and Year:
Course Number and Title:
Pre-Requisites:
Post-Requisites:

Please reflect on the course you have just finished teaching and determine how to improve the course in the future. The questions are provided to guide your thoughts but you do not need to answer all questions.

1. What changes did you make to your course this year in response to student or other feedback?

2. Based on your experience with this class this semester, how appropriate are the course goals (or outcomes)?

3. What method(s) did you use to assess whether or not students met the above-listed goals?

4. Are you satisfied with how well the students were able to obtain these goals?

5. What will you do differently next time?

Pre-Requisites
6. Do students have the required prerequisite knowledge? If not, what is lacking?

7. Comment on the students’ ability to do what you expected them to do in the course?

Post-Requisites
8. What do the instructors of those courses expect the students to know?

9. Do the instructors of those courses indicate that the students entered with the appropriate knowledge?

10. How can you change this course to better fit these outcomes?

Student Engagement
11. How would you change the course to increase student engagement?

Course Evaluations and Other Summary Comments
12. Please summarize your student evaluations for this course and comment on any changes you might make in response to those evaluations. Also, use this space to add other comments.
OUTCOME A
An Ability to Apply Knowledge of Mathematics, Science, and Engineering

Courses:

Instructor: Semester/Yr:

1. Brief statement describing the specifics of the assignment, quiz, exam, problem, etc., used to assess this outcome.

2. Statement of how the problem addresses the outcome.

4. What they understand.

5. What they don't understand.

6. Conclusion (supported by data).

7. Recommendations to improve achievement of this outcome.
ABET Outcomes Assessment

Annual Departmental Summary of Outcomes Assessment

Outcomes Assessed: Semester/Yr:

1. Courses Used to Assess Outcomes

2. Participants in Departmental Discussion

3. Summary of Discussion

4. Conclusions

5. Recommendations

COLLEGE OF MINES & EARTH SCIENCES
Geology & Geophysics
the university of utah
Direct-Assessment
Final Talking Points

1. Develop a Clear Structure
2. Engage Faculty to Create an Outcomes Matrix
3. Keep it Simple (Must not Collapse Under Own Weight)
4. Create Simple Forms for...
 i. Individual Outcomes Assessment
 ii. Reflective Memos
 iii. Small Group Assessment
 iv. Full Faculty Assessment
5. Have a Firm Calendar
6. Have a Birddog
7. Make it Fun and Useful
8. Make Everything Accessible Through an Intranet or Ubox